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Abstract. An Ammam-Beenker 2D octagonal quasilattice is derived from a Landau like method starting
from an octagonal seed. The level of stability of this quasilattice, i.e. the level of difficulty in creating
defects, is directly measured.

PACS. 61.44.Br Quasicrystals

1 Introduction

Metastable infinite clusters with icosahedral symmetry
have been predicted to occur since 1982 [1] as a structure
derived from the energy optimization [2] during a search
for a material issued from an icosahedral seed. Soon after,
in 1984, a first observation of icosahedral symmetry on a
macroscopic sample of a rapidly solidified alloy AlMn [3]
was done. Since the diffraction patterns of this sample
were composed of nearly delta function peaks with non-
periodical symmetry, the name quasicrystal was coined
to such materials. Since that time numerous examples of
other quasicrystals, i.e. materials with diffraction patterns
composed of nearly delta function peaks with non periodi-
cal symmetry, have been observed. And among them, qua-
sicrystals with 2D octagonal symmetry and periodicity in
the transverse direction [4,5] were also observed. Thus the
goal of the present paper is to find an octagonal structure
by the optimization method used before for icosahedral
symmetry [1,2].

Of course, observations of quasicrystals have always
been closely linked with theoretical considerations. Differ-
ent theoretical methods are available to build quasicrys-
talline structures. Firstly, geometrical methods of pack-
ing and covering [7] define quasicrystalline arrangements
of convenient tiles. The cut and projection method starts
from a 2D or 3D cut of a hypercubic space with a minimal
thickness and projects it in a one-to-one correspondence
onto physical 2D or 3D space [8]. This construction is
linked with the algebraic properties of numbers which are
the roots of the algebraic equations associated with the
basic symmetries of the initial hyperspace [9].

These different theoretical methods have a more or less
common underlying origin which is the energy minimiza-
tion. The energy minimization for a system of particles
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linked by pair interactions leads to an optimal structure
resulting from a superposition of density waves [2,10].
Then a discretization process such as the cut and projec-
tion method, can be used to define the quasilattice. Here
we want to consider the discretization process used years
ago to deduce an icosahedral seed [1]. Thus the goal of the
present paper is to show that the principle of the energetic
method leads to an octagonal tiling when starting from an
octagonal seed.

In a first section the details of the energetic method
are reported. The following section is devoted to the ap-
plication of this method to the case of a sample invari-
ant under eightfold symmetries. Conclusions are drawn
from comparisons between possible defects and calculated
diffraction patterns of these structures.

2 The energetic method

This method [2,10,11] is based upon the consideration
of pair interactions defined by pair potentials Vij(−→r ) be-
tween two atoms of species i and j which are located at
a distance −→r . Pair potentials are taken because of sim-
plicity since known quasicrystals are metallic alloys. Thus
the part of covalent binding can be neglected, as well as
Fermi surface effects for these rather bad conductors. In-
troducing continuous densities for atomic species extends
the set of considered structures and leads to the classic
total static interaction energy E with the classical Bragg-
Williams expression:

E =
1
2

∑
i,j

∫
ni(−→x )nj(−→y )Vij(−→x −−→y )d−→x d−→y . (1)

Because of the convolution term, this interaction energy is
easily translated in terms of Fourier transforms of atomic
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density and interaction potential:

E =
1
2

∑
i,j

∫
n∗

i (
−→p )nj(−→p )Vij(−→p )d−→p . (2)

This interaction energy is then optimized by considering
a set of convenient infinitesimal variations of the specific
optimal densities:

δni (−→p ) = Ciδ (−→p −−→p0) (3)

where the Dirac delta-function is used, defining a wave-like
variation of wavevector. Such variations do not keep con-
stant the atomic density but are useful to define optimal
configurations. When neglecting the boundary conditions,
i.e. for an infinite sample, the deduced conditions for ev-
ery species lead to the set of variational equations which
form the linear system:

∑
j

nj (−→p )Vij(−→p ) = 0. (4)

So, in order to obtain a non trivial solution of this linear
system for the densities, the condition:

det [Vij(−→p )] = 0 (5)

must be fulfilled for some wavevector −→pk.
Pair interactions are isotropic. Thus equation (5) sim-

ply defines the radial wavevector pr and is indifferent to
the wavevector direction. Apart from this directional de-
generacy, equation (5) can also have several roots as it
occurs actually for basic pair potentials [2]. Finally the
directional degeneracy is lifted by the symmetry choice
of the selected quasicrystalline structure in the practical
calculation, equation (5) has a finite set of solutions.

Close to a single root pn
−→um where −→um is a unit vector,

the equations (4) are easily linearized by developing the
pair potentials Vij(−→p ). One can deduce from equations (4)
the set of approximate equations

∑
j

nj (−→p ) (Aij
−→p + Bijpn

−→um) = 0 (6)

with the final result after convenient linear operations us-
ing equation (5):

(−→p − pn
−→um)

∑
j

Cjnj (−→p ) = 0. (7)

Then with the assumption that all roots are simple ones,
which is a weak constraint, leads to the solution for the
optimal atomic densities ni (−→p ) calculated as distribution
functions ni (−→p ) = Cn,m,iδ(−→p − pn

−→um). Here the theo-
rem which gives Cδ(x) = T for the solution of the equa-
tion xT = 0 has been used [13]. Adding the contributions
coming from all admissible roots, the resolution reads for
every specific atomic density:

ni (−→p ) =
∑
n,m

Cn,m,iδ(−→p − pn
−→um) (8)

where a set of arbitrary unit vectors has been introduced.
Thus the spatial density in real space is:

ni (−→x ) =
∑
n,m

Cn,m,i exp [pn
−→um · −→x ] . (9)

This set of equations for the species i gives the respec-
tive densities as a superposition of waves, as announced.
A similar result was obtained from a direct analysis in
real space, by means of a Taylor’s expansion in the simple
case of a single species [2]. Let us notice that a part A
of an optimal structure contained within a box ∆ has for
density ni,A (−→x ) = ni (−→x )Y (∆) where Y (∆) is the step
function of the domain ∆. The Fourier transform of this
new density is deduced from the convolution:

F [ni,A] = F [ni] ◦ F [Y∆] .

The delta peaks of the density ni (−→p ) become smoothed
with a width π

L and a finite intensity for the den-
sity ni,A (−→p ). The remark of the similarity between the
Fourier transforms of the optimal structure and of a part
of it enables us to deduce the basic wavevectors pn

−→um

just from the Fourier transform of the density ni,A (−→x )
of an optimal structure restricted within a box ∆. This
definition of the basic wavevectors from a seed structure
contained in a box is approximate because of the peak
linewidth. And it does not define the phase and amplitude
of the coefficients Cn,m,i which can be selected either from
a fit with experimental diffraction data or from simple ar-
guments as done here. The great advantage of this method
is that the knowledge of the detailed interactions within
the sample is not required to obtain a structure. Since
there are already tens of thousands of different quasicrys-
tals with similar symmetries [12] this saves a considerable
amount of work for a first approach. We call this method
a Landau-like method by reference to numerous Landau’s
works and specially with helium rotons [6] because of the
use of a variational method in the reciprocal space. The
next point to understand is how the basic wavevectors of
this seed do match themselves to define the structure.

3 2D quasicrystal construction with eightfold
symmetry

The starting point is the definition of a simple set A,
i.e. our seed cluster. Since eightfold symmetry is not
compatible with crystalline symmetry while fourfold sym-
metry is, a reasonable definition of a cluster with eightfold
symmetry introduces a cluster with fourfold symmetry,
a centered square and duplicates this symmetry with
two symmetric neighbors at each apex. The distance be-
tween neighbors is unity. This defines the set A as an
octagon with a centered square inside as shown in Fig-
ure 1 which also indicates that two distinct initial squares
lead to the same final octagon. The radius of the oc-
tagon is L/2 =

√
2 +

√
2 = 1.85. The wavevector density

ni,A (−→p ) of the set A is calculated on a polar lattice of
100 × 100 points restricted to a disk with a radius of a
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Fig. 1. The 12 sites cluster with eightfold symmetry, with unit
length links. A variant of the central cluster is shown in dotted
lines.

few 2π. From these points a steepest descent method is
used to reach the maximum values of ni,A (−→p ) and their
location. Then the choice of a threshold n0 = 2 enables us
to restrict the set of maximums to eight, with octagonal
invariance and n′

0 = 5.73, p0 = 7.039. These results show
both the imperfect interference since the maximal value
of n is thirteen. The wavevector length is quite close to
2π, the geometrical value.

The quasicrystalline structure with eightfold symme-
try in real space is then defined by the set of maxima of
the atomic density defined in equation (9), where all coef-
ficients are taken equal to unity for the sake of symmetry.
Such a structure is characterized by the values {n1, r0}
where n1 is the density threshold and r0 is the minimal dis-
tance between admitted sites, a Delaunay’s condition [14],
which introduces the short range repulsive part of the in-
teraction Vij(−→r ). Obviously the value r0 of the minimal
distance must be chosen close to and smaller than unity in
order to be consistent with the cluster construction, here
r0 = 0.99. The application of Delaunay’s condition leads
to select the highest maxima when two density maxima
are closer than r0. Of course each maximum is compared
to all the previous ones. The structure deduced from a
density value n1 = 2 is shown in Figure 2 within a ra-
dius of 16.81 units. This structure extends to infinity the
central octagon and its eightfold symmetry, and is practi-
cally independent of the choice of the density value which
can be taken as high as four without any change, while
the maximum value of n(−→r = 0) is nine since the null
wavevector is also used as a basic vector. This relative in-
dependence of the structure upon the practical parameter
choice is a strong proof for structural stability. Practically
the atomic density values are different for the selected sites
and are invariant under a central eightfold symmetry.

The distances between sites as they appear in a ra-
dial distribution function or in a pair distribution func-
tion define a discrete set as numerically observed in qua-
sicrystalline structures [1]. Thus in order to compare the
structure of Figure 2 with geometric tilings made of joint
geometric figures, links between neighboring sites whose
distance is close to a given value d =

√
2, d′ =

√
2 +

√
2,

Fig. 2. The central part of the quasicrystalline structure with
eightfold symmetry with {n1 = 2, r0 = 0.99}.

d′′ =
√

2
√

2 +
√

2 are drawn on the structure as shown
in Figures 3. This enables us to show in Figure 3a with
the pairing distance d that the central octagon is repro-
duced. Similar octagons and parts of octagons appear
in the whole sample. In Figure 3b with the pairing dis-
tance d′, i.e. the octagon radius, the whole quasilattice is
defined by links. Only two tiles of side d are involved in
this construction, namely a square and a rhombus with an-
gles 45◦ and 135◦, a Ammam-Beenker octagonal lattice.
These tiles are obviously linked with the eightfold sym-
metry as already shown by other authors [16]. It must be
noted that this tiling is perfect. In Figure 3c the resulting
figure with the pairing distance d′′ contains two entangled
sets of regular percolating lines and a central independent
octagon as well as isolated points. In Figures 2 and 3 the
structure deduced from the initial external cluster seed of
eight sites shown in Figure 1 is found. The process extends
the basic structure of this initial seed up to infinity.

When using a modified process different defects can
be produced. These local defects do not perturb the site
network over more than a few distance units. As a matter
of fact these defects also exhibit a local eightfold sym-
metry. The first defect is a symmetric variant of a small
unit composed of two rhombi and one square, while the
second defect is localized within an octagon made of two
squares and four rhombi. In the last cases, several sym-
metric configurations can occur and a few ones are ob-
served in less accurate numerical treatments. This defines
some phasons of this structure [15]. In Figure 4 the struc-
ture with {n1 = 4.5, r0 = 0.99} is reported with the pair-
ing distance d′. There is evidence for a few local defects
of various sizes. There are eight defects which are eight
individual lacunas in a perfect sample of 5869 sites. In the
linked lattice these defects define four darts and four stars
with two sharp edges, while the other part is unmodified.
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(a)

(b)

(c)

Fig. 3. (a) The same structure as in Figure 2 with links be-
tween pairs with d = 1.4. (b) The same structure as in Figure 2
with links between pairs with d′ = 1.85. (c) The same structure
as in Figure 2 with links between pairs with d′′ = 2.61.

Fig. 4. The central part of the quasicrystalline structure with
eightfold symmetry with {n1 = 4.5, r0 = 0.99}, i.e. 5861 sites
with links between pairs with d′ = 1.85.

Of course the structure deduced from {n1 = 5, r0 = 0.99}
or {n1 = 6, r0 = 0.99} contains larger and more numerous
defects.

The diffraction patterns associated with the structure
of 353 sites shown in Figure 2 are reported respectively in
Figure 5a when the amplitude threshold n2 for the selec-
tion of a point is 50 and in Figure 5b when n2 = 100. Both
Figures exhibit a perfect eightfold symmetry, practically
threshold independent, with an extreme accuracy. This
diffraction pattern is quite resistant to the introduction of
defects in the structure. As an obvious conclusion of the
clear definition of this structure, its moderate richness in
defects and its well defined diffraction pattern, the eight-
fold symmetry leads to a stable structure. This confirms
the experimental observations [4,5].

4 Conclusive remarks

So the energetic method used here leads to an octagonal
quasilattice when starting from an octagon seed made of
thirteen atoms: an octagon, a square and a central atom.
Moreover during the proper use of the energetic method,
the quasilattice stability is evidenced since the resulting
structure is unaffected by significant changes of the used
parameters. Sites are seen to be non equivalent. And thus
lacunas can be created, with evidence for different local en-
vironments. The generalization to other seed symmetries,
practically sevenfold, elevenfold and thirteen has been de-
veloped with the introduction of new structures and ar-
guments on their relative stability.
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(a) (b)

Fig. 5. The diffraction patterns of the structure shown in Figure 2 with (a) n2 = 50 and (b) n2 = 100.
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D. Mercier, J.-C.S. Lévy, Phys. Rev. B 27, 1293 (1983)

2. J.-C.S. Levy, Surf. Sci. 104, 1 (1981)
3. D. Shechtman, I.A. Blech, D. Gratias, J.W. Cahn, Phys.

Rev. Lett. 53, 1951 (1984)
4. N. Wang, H. Chen, K.H. Kuo, Phys. Rev. Lett. 59, 1010

(1987)
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